

Passive Microwave and Submillimetre-wave Imager Technologies for Met-Op SG

Presented by Simon Rea Slides prepared by Astrium, JCR Systems, SEA, STFC RAL 7 September 2011

Centre for EO Instrumentation

Missions

Mission	MWS	WWI	ICI SC F pare mechanism Main Calibration Calibration Main beam (Earth scart)
Objectives	Temperature/humidity profiles in clear and cloudy air cloud liquid water total column	Precipitation products	Cloud ice products
Instrument	Across-track scanning sounding radiometer	Conically scanning imaging radiometer	Conically scanning imaging radiometer
Heritage	AMSU-A, MHS	WINDSAT, SSMI-S, AMSR, MADRAS, EGPM, MIMR,	WINDSAT, SSMI-S, AMSR, MADRAS, EGPM,
Priority	1	2	MIMR

Technical Challenges of Imaging Radiometers

- Robust instrument calibration
 - History of poor calibration
 - New techniques developed to improve calibration
- Minimisation of platform disturbance
 - Large rotating mass displaced from platform centre of gravity
- Stringent sensitivity requirements
 - Short integration times
 - Minimisation of optics loss / Rx noise

Study Objectives

- To bring together a strong UK Systems team in preparation for MetOp SG Phase B2/CD
- To address the key technical challenges of the imaging radiometers
- To help position UK industry to win an instrument prime role on one of the imaging instruments

Study Scope

- Activities focused on four inter-related subsystems
 - 1. Calibration Subsystem
 - Development of advanced calibration performance models
 - Consolidation of calibration subsystem requirements
 - 2. Quasi-optics Subsystem
 - *Review current QO design, identification of improvements*
 - Design and breadboarding of 183 GHz feedhorns
 - 3. Receiver Subsystem
 - Breadboard of 183 GHz receiver
 - Investigation of key receiver issues including advanced calibration procedures, feedhorn loss, mixer VSWR
 - 4. Active Balancing Subsystem
 - Consolidation of active balance control requirements
 - Breadboard of active balance subsystem

Calibration Issues

- Previous imaging radiometers have used standard two-point calibration
- Scanning & orbital geometries make standard calibration difficult
 - Solar intrusion on hot target
 - Lunar intrusion on cold space view
- Four-point (or more) calibration has been proposed
 - Use of additional internal noise sources
 - Noise diodes, matched loads, active cold loads
- Benefits of using internal noise sources calibration
 - Can monitor performance of primary targets
 - Can replace primary targets if contaminated
 - Can reduce post-launch non-linearity errors
- However leads to degradation in sensitivity and increase complexity/cost
 UK Centre for EO Instrumentation
 Page 6

Calibration Issues

- What is the most appropriate calibration method?
 - Combination of internal noise sources?
 - How should the noise sources be coupled to the receiver?
 - Passive couplers, switches
- Recommended method to be characterised as part of 183 GHz receiver tests

Examples of Internal Calibration Configurations

UK Centre for EO Instrumentation

Active Balancing Issues

- Initial platform balancing performed during Ground AIV
- Additional displacements expected due to launch and outgassing
 - Analysis suggests periodic active balancing will be required throughout the life of the satellite

Active Balancing Issues

- Active Balancing System comprises
 - Sensors to identify the displacement torque
 - Mechanism to correct for imbalance
 - Control algorithms to calculate and apply corrections
- Main focus on optimisation of control algorithms
- Existing scan mechanism breadboard used for ABS demonstrator
 - Tests with varying levels of imbalance shall be conducted
 - Confirmation that control algorithm is converging and sufficiently sensitive to meet the anticipated balancing requirements